A new class of generalized Bayes minimax ridge regression estimators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new class of generalized Bayes minimax ridge regression estimators

Let y = Aβ + ε, where y is an N × 1 vector of observations, β is a p× 1 vector of unknown regression coefficients, A is an N × p design matrix and ε is a spherically symmetric error term with unknown scale parameter σ. We consider estimation of β under general quadratic loss functions, and, in particular, extend the work of Strawderman [J. Amer. Statist. Assoc. 73 (1978) 623–627] and Casella [A...

متن کامل

An extended class of minimax generalized Bayes estimators of regression coefficients

We derive minimax generalized Bayes estimators of regression coefficients in the general linear model with spherically symmetric errors under invariant quadratic loss for the case of unknown scale. The class of estimators generalizes the class considered in Maruyama and Strawderman (2005) to include non-monotone shrinkage functions. AMS subject classification: Primary 62C20, secondary 62J07

متن کامل

Bayes’ estimators of generalized entropies

The order-q Tsallis (Hq ) and Rényi entropy (Kq ) receive broad applications in the statistical analysis of complex phenomena. A generic problem arises, however, when these entropies need to be estimated from observed data. The finite size of data sets can lead to serious systematic and statistical errors in numerical estimates. In this paper, we focus upon the problem of estimating generalized...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2005

ISSN: 0090-5364

DOI: 10.1214/009053605000000327